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Introduction to Gaussian Process

Definition & Properties

Definition of GP

A Gaussian Process with a mean function m, covariance kernel K , is a
collection of random variable {ft}t∈T (where T can be an uncountable
index set) such that for any finite collection t1, t2, .., tk

f (t1), f (t2), .., f (tk) ∼ N (µk ,Σk×k)

where µ := m(t1, t2, ..., tk), Σij := K (ti , tj)
This Gaussian marginalization makes it easy to use and interpret GP
confined to a finite set of points.
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Introduction to Gaussian Process

Definition & Properties

Properties of GP

A GP can be viewed as a distribution over functions f on the index
set T

When we are confining ourselves to a finite set of points t1, t2, .., tk
we are actually looking at the distribution of the function to the
finite sets, which follows Gaussian.

The mean function controls the general trend of the GP, while the
covariance kernel controls the smoothness of the GP function.
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Introduction to Gaussian Process

Definition & Properties

Simulating Gaussian Process

To simulate a GP with a known mean function m and covariance kernel
K , we do the following steps

Choose an interval for simulation e.g [0,1]

Get a set of equally spaced points in the interval x1, x2, ..., xk e.g.
{0.01, 0.02, ..., 1}
Calculate µ := (m(x1),m(x2), ...,m(xk)) and Σ := (K (xi , xj))ij

Simulate from N (µk ,Σk×k)

Connect the points to get a sample of the GP. Here by connecting
we are actually choosing one particular GP function out of all those
which has the same values at x1, x2, ..., xk
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Introduction to Gaussian Process

Definition & Properties

Simulating Gaussian Process

Figure: (a) GP simulation on unit interval with a mean and covariance kernel (b) GP
simulation after pivoting values at two points (posterior distribution). The shaded
region in both the graphs shows the interval of length twice the variance around the
mean at each point
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Introduction to Gaussian Process

Kernel Functions

Role of Kernel function

The main importance of Kernel function is to control the variance of
the function around the mean. Note that the covariance between
xi , xj is Cov(f (xi ), f (xj)) = K (xi , xj) That means the kernel also
controls how much dependent the function values will be at two
distinct points.

If the covariance kernel is of the form K (xi , xj) = g(d(xi , xj)) where
g is a decreasing function and d(xi , xj) is some kind of distance
function between the two datapoints, then the GP will have the
property that the covariance is highest in a close neighborhood
around a point implying continuity.

A kernel is stationary if the kernel function depends on xi , xj only by
‖xi − xj‖
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Introduction to Gaussian Process

Kernel Functions

Examples

Some covariance kernels are-

Squared exponential kernel K (x , y) = s exp(−‖x−y‖
2

2l2 )

Dot product kernel K (x , y) = σ2 + xᵀΣy

Neural network kernel K (x , y) = 2
π sin−1

(
2xᵀΣy√

(1+2xᵀΣx)(1+2yᵀΣy)

)
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Introduction to Gaussian Process

Motivation of using GP

Bayesian Linear Regression

We have the model

y = Xβ + ε, ε ∼ N (0, σ2I ), β ∼ N (0,Σ)

=⇒ Xβ ∼ N (0,XΣXᵀ)

Instead of using the model above, we can use a feature transformation of
X , φ(X )

y = φ(X )β + ε, ε ∼ N (0, σ2I ), β ∼ N (0,Σ)

=⇒ Xβ ∼ N (0, φ(X )Σφ(X )ᵀ)

Where the dimension of φ(X ), X can differ. Notice that both
Xβ, φ(X )β are functions of X
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Introduction to Gaussian Process

Motivation of using GP

From Bayesian Regression to GP

Question: Can we take all possible φ into our consideration, and perform
linear regression with such feature transforms at the same time also
getting rid of the model parameters?
Answer: Gaussian Process functions!
Notice that in both the cases, under gaussian prior over the parameters,
the final function follows Gaussian. So what we do is assume the model
to be-

y = f (X ) + ε, ε ∼ N (0, σ2I ), f ∼ GP(0,K )

=⇒ f (X ) ∼ N (0,KXX )

The kernels also have the property that for any finite dimensional X , we
always have KXX non-singular. The nice marginal gaussianity ensures
that we can forget about the functions behaviour at other points than
the datapoints we have.
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Application of Gaussian Process

Regression

GP Regression

We assume the following model in absence of noise (i.e. the case when
we observe exact functions f )

y = f (X ), f ∼ GP(0,K )

=⇒ f (X ) ∼ N (0,KXX )

Let us have a training data (X , f ), and some test data X∗, where the
corresponding f∗ is not observed. Now,[

f
f∗

]
∼ N

(
0,

[
KXX KXX∗

KX∗X KX∗X∗

])
=⇒ f∗|X∗,X , f ∼ N (f̄∗,Cov(f∗))

f̄∗ = KX∗XKXX
−1f , Cov(f∗) = KX∗X∗ − KX∗XKXX

−1KXX∗
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Application of Gaussian Process

Regression

GP Regression

In the presence of noisy observation

y = f (X ) + ε, ε ∼ N (0, σ2I ), f ∼ GP(0,K )

=⇒ f (X ) ∼ N (0,KXX )

Now we have a training data (X , y), and some test data X∗, where the
corresponding y∗ is not observed. In this case we get[

y
f∗

]
∼ N

(
0,

[
KXX + σ2I KXX∗

KX∗X KX∗X∗

])
=⇒ f∗|X∗,X , y ∼ N (f̄∗,Cov(f∗))

f̄∗ = KX∗X (KXX + σ2I )−1y , Cov(f∗) = KX∗X∗ − KX∗X (KXX + σ2I )−1KXX∗
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Application of Gaussian Process

Classification

The model

Let us consider binary classification. Much like Bayesian logistic
regression we have the model

y = Bin(σ(f (X ))), f ∼ GP(0,K )

=⇒ f (X ) ∼ N (0,KXX )

where σ(x) = 1
1+exp(−x) , the softmax function.
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Application of Gaussian Process

Classification

Inference

To perform inference for a test dataset X∗, we have to follow a set of
operation,

Compute p(f |X , y) i.e. the posterior distribution of latent function f
given the dataset. Where

p(f |X , y) ∝ p(y |f ) p(f |X )

= σ(f )y (1− σ(f ))1−yp(f |X )

Compute p(f∗|X∗,X , y) =
∫

p(f∗|X∗,X , y) p(f |X , y) df

Compute p(y∗ = 1|X∗,X , y) =
∫

p(y∗ = 1|f∗) p(f∗|X∗,X , y) df∗
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Application of Gaussian Process

Classification

Inference

The main problem in the process is finding p(f |X , y) as it has two
parts among which one part is Gaussian and the other part is not.

If by any method we can approximate this posterior by a Gaussian
one, then from that we can perform the subsequent steps easily. The
last step can be overcome by simulating from p(f∗|X∗,X , y) and
performing average of p(y∗ = 1|f∗) over this simulated f∗

There are a variety of approximation method. Some of which are
Laplace approximation, Variational inference.
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Application of Gaussian Process

Hyperparameter Tuning

Marginal log-likelihood

Remember that the covariance kernel has some hyperparameters which
we might want to choose properly. Let us now go back to the GP
regression setup. For a training data (X , y) we can calculate the marginal
log-likelihood by marginalizing over the latent function f

p(y |X ) =

∫
p(y |f ,X )p(f |X )df

where f |X ∼ N (0,K ), y |f ∼ N (f , σ2I )

=⇒ log p(y |X ) = −1

2
yᵀ(K + σ2I )−1y − 1

2
log |K + σ2I | − n

2
log(2π)

Where we call the first part data fit, and the second part is called model
complexity.
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Application of Gaussian Process

Hyperparameter Tuning

Optimizing marginal log-likelihood

To find the optimal value of the hyperparameters by maximizing the
log-likelihood, we use the gradient descent algorithm on the negetive
log-likelihood. For that we calculate the gradient of the loss. Denoting
K̄ := K + σ2I

L := − log p(y |X ) ∝ yᵀK̄−1y + log |K̄ |+ n log(2π)

∂L
∂θ

= −yᵀK̄−1
(∂K̄
∂θ

)
K̄−1y + Tr

(
K̄−1 ∂K̄

∂θ

)
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Challenges of Gaussian Process

The Marginal log-likelihood revisited

Complexity of calculation

Remember the gradient of loss function

∂L
∂θ

= −yᵀK̄−1
(∂K̄
∂θ

)
K̄−1y + Tr

(
K̄−1 ∂K̄

∂θ

)
Also, to monitor trajectory of training, we generally also calculate the loss
function. So there are 3 major things that we need to calculate.

K̄−1y inverse of the kernel matrix which has dimension N × N, N
being the size of dataset.

|K̄ | the determinant of the kernel matrix
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Challenges of Gaussian Process

The Marginal log-likelihood revisited

Cholesky decomposition

Till now people had been using Cholesky decomposition for this task. For
any given positive definite matrix A the decomposition gives us a lower
triangular matrix L which satisfies the property that A = LLᵀ

Pros:

The solution for L can be found by solving a set of easily numerically
solvable equations giving one by one each of the elements of the
lower triangular matrix.

After finding L it is easy to calculate the inverse of A by solving
another set of easily solvable equations.

Determinant of A also becomes easy to calculate.

Cons:

The naive implementation of Cholesky decomposition has O(N3)
time complexity.

The sequence of equation can not be parallelized.
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Challenges of Gaussian Process

BlackBox Matrix Multiplication (GPyTorch)

BCG algorithm (The inverse)

Gardner, Pleiss, Wilson et al.[2019] used a number of tricks to solve
these computational challenges. If we need to calculate K̄−1y , then
instead of calculating inverse and then doing the multiplication with y we
can get u ≈ K̄−1y (with arbitrary precision) by solving the convex
optimization problem

u = argmin
v

1

2
vᵀK̄v − vᵀy

The algorithm only needs a BlackBox Matrix Multiplication module that
does all the matrix multiplication in a heavily optimized and parallelized
way.
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Challenges of Gaussian Process

BlackBox Matrix Multiplication (GPyTorch)

BCG algorithm (The inverse)

The solver now performs gradient descent algorithm to find the
minima which can be parallelized (also using GPU).

To achieve a certain level of reasonable accuracy, the runtime of the
algorithm is much less compare to computing Cholesky.

It only requires some basic Matrix multiplication for which heavily
optimized distributed algorithm exists.
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Challenges of Gaussian Process

BlackBox Matrix Multiplication (GPyTorch)

BCG algorithm (The Trace)

To find the trace term in the log-likelihood, we notice the fact that if z is
a random variable with E[z ] = 0 and E[zzᵀ] = I then

Tr(A) = E(zᵀAz)

So one can simulate z1, z2, ..., zt (maybe from N (0, I )) and compute

Tr(A) ≈ 1

t

t∑
i=1

zi
ᵀAzi
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Challenges of Gaussian Process

BlackBox Matrix Multiplication (GPyTorch)

BCG algorithm (The Trace)

So in our case we can compute

Tr
(
K̄−1 ∂K̄

∂θ

)
≈ 1

t

t∑
i=1

(
zi

ᵀK̄−1
)(∂K̄

∂θ
zi
)

Where the first term can be computed using BCG and transposing the
result, and the second term is just a matrix multiplication. Thus the final
algorithm becomes

Get z1, z2, ..., zt by simulation

Compute [u0, u1, u2, ..., ut ] = BCG (y , z1, z2, ..., zt)

calculate the trace and inverse multiplications by using ui
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Summary

BCG algorithm (The Trace)

Gaussian Process gives us a non-parametric model that at the same
time is powerful to fit any dataset, as well as of Bayesian nature.

Both Linear regression and Neural Network fully connected layers
can be regarded as a special case of GP, with asymptotic properties
of GP. So, we can use GP over all of these kind of models.

While the computation cost had been a hinderence for using GP on
practical datasets of reasonable size, recent research has enabled us
to apply GP on datasets of size over 1M

GPyTorch is an extension of PyTorch which lets you fit Gaussian process
regression and classification on huge datasets and also uses PyTorch
models (even Neural networks) very easily.
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Summary

Thank you!
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